Fisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework

نویسندگان

چکیده مقاله:

Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a general concept of Fisher’s linear discriminant analysis that extends the classical multivariate method to the case functional data. A bijective map is used to link a second order process to the reproducing kernel Hilbert space, generated by its within class covariance kernel. Finally a real data set related to Iranian weather data collected in 2008 is also treated.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Fisher’s Discriminant Analysis in Gaussian Reproducing Kernel Hilbert Space1

Kernel Fisher’s linear discriminant analysis (KFLDA) has been proposed for nonlinear binary classification (Mika, Rätsch, Weston, Schölkopf and Müller, 1999, Baudat and Anouar, 2000). It is a hybrid method of the classical Fisher’s linear discriminant analysis and a kernel machine. Experimental results (e.g., Schölkopf and Smola, 2002) have shown that the KFLDA performs slightly better in terms...

متن کامل

Real reproducing kernel Hilbert spaces

P (α) = C(α, F (x, y)) = αF (x, x) + 2αF (x, y) + F (x, y)F (y, y), which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that F (x, y) = 0. In the case F (x, y) 6= 0, P (α) is a quadratic polynomial and because P ≥ 0 it follows that the discriminant of P is ≤ 0: 4F (x, y) − 4 · F (x, x) · F (x, y)F (y, y) ≤ 0. That is, F (x, y) ≤ F (x, y)F (x, x)F (y, y), and this implies that F ...

متن کامل

Kernel Fisher Discriminant Analysis in Gaussian Reproducing Kernel Hilbert Spaces –Theory

Kernel Fisher discriminant analysis (KFDA) has been proposed for nonlinear binary classification. It is a hybrid method of the classical Fisher linear discriminant analysis and a kernel machine. Experimental results have shown that the KFDA performs slightly better in terms of prediction error than the popular support vector machines and is a strong competitor to the latter. However, there is v...

متن کامل

Distance Functions for Reproducing Kernel Hilbert Spaces

Suppose H is a space of functions on X. If H is a Hilbert space with reproducing kernel then that structure of H can be used to build distance functions on X. We describe some of those and their interpretations and interrelations. We also present some computational properties and examples.

متن کامل

Some Properties of Reproducing Kernel Banach and Hilbert Spaces

This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 25  شماره 2

صفحات  13- 17

تاریخ انتشار 2021-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023